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The propagation of plane acoustic waves in smooth pipes and their reflection at open 
pipe terminations have been studied experimentally. The accuracy of the measurements 
is determined by comparison of experimental data with results of linear theory for the 
propagation of acoustic waves in a pipe with a quiescent fluid. The damping and the 
reflection at an unflanged pipe termination are compared. 

In the presence of a fully developed turbulent mean flow the measurements of the 
damping confirm the results of Ronneberger & Ahrens (1977). In the high-frequency 
limit the quasi-laminar theory of Ronneberger (1975) predicts accurately the convective 
effects on the damping of acoustic waves. For low frequencies a simple theory 
combining the rigid-plate model of Ronneberger & Ahrens (1977) with the theoretical 
approach of Howe (1984) yields a fair prediction of the influence of turbulence on the 
shear stress. The finite response time of the turbulence near the wall to the acoustic 
perturbations has to be taken into account in order to explain the experimental data. 
The model yields a quasi-stationary limit of the damping which does not take into 
account the fundamental difference between the viscous and thermal dissipation 
observed for low frequencies. 

Measurements of the nonlinear behaviour of the reflection properties for unflanged 
pipe terminations with thin and thick walls in the absence of a mean flow confirm the 
theory of Disselhorst & van Wijngaarden (1980), for the low-frequency limit. It 
appears however that a two-dimensional theory such as proposed by Disselhorst & van 
Wijngaarden (1 980) for the high-frequency limit underestimates the acoustical energy 
absorption by vortex shedding by a factor 2.5. 

The measured influence of wall thickness on the reflection properties of an open pipe 
end confirms the linear theory of Ando (1969). In the presence of a mean flow the end 
correction 6 of an unflanged pipe end varies from the value at the high-strouhal- 
number limit of &/a = 0.61, with a the pipe radius, which is close to the value in the 
absence of a mean flow given by Levine & Schwinger (1948) of 6/a = 0.6133, to a value 
of 6 /a  = 0.19 in the low-Strouhal-number limit which is close to the value predicted by 
Rienstra (1983) of 6 /a  = 0.26. 

The pressure reflection coefficient is found to agree with the theoretical predictions 
by Munt (1977, 1990) and Cargill (1982b) in which a full Kutta condition is included. 
The accuracy of the theory is fascinating in view of the dramatic simplifications 
introduced in the theory. For a thick-walled pipe end and a pipe terminated by a horn 
the end correction behaviour is similar. It is surprising that the nonlinear behaviour at 
low frequencies and high acoustic amplitudes in the absence of mean flow does not 
influence the end correction significantly. 
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Author 
Munt (1977, 1990) 
Rienstra (1983) 
Cargill (1982a, b) 
Ando (1 969) 
Levine & Schwinger (1948) 
Nomura (1 960) 
Kirchhoff (1868) 
Tijdeman (1975) 
Howe (1979b, 1984) 
Ronneberger (1975) 
Ronneberger & Ahrens (1977) 
Ingard & Singhal (1974, 1975) 
Disselhorst & Wijngaarden (1980) 
Ingard & king (1 967) 
Bechert (1 980) 
Cummings & Eversman (1983) 
Cummings (1984) 
Alfredson & Davies (1970) 
Abrishaman (1977) 
Davies (1980) 
Abom & Boden (1986, 1988) 
Peters et al. (1992) 
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- x - - < 1  < 1  e l  $ 1  

- x x -  var. 0 -  $ 1  

x var. 0 -  $ 1  
- x x x < I  < 1  * I  $ 1  
x - -  x var. < 1 var. $ 1 

x x -  x < 3.5 < 0.5 var. $ 1 
x x -  - < 1  0 -  var. 

- - _  

x x - -  var. < 1 var. < 1 

- x x x - >0.1 < 0 . 2  > 1  $ 1  

x x x - < 0.3 < 0.2 var. var. - 

TABLE 1. Summary of existing theoretical and experimental literature on the reflection and damping 
of acoustic waves in an open pipe; var. denotes a continuous range of values 

The aero-acoustic behaviour of the pipe end is dramatially influenced by the 
presence of a horn. In the presence of a mean flow the horn is a source of sound for 
a critical range of the Strouhal number. 

The high accuracy of the experimental data suggests that acoustic measurements can 
be used for a systematic study of turbulence in unsteady flow and of unsteady flow 
separation. 

1. Introduction 
In duct systems, which are part of complex flow distribution systems, used for 

example by the Netherlands gas distribution company to distribute gas under high 
pressure, acoustic excitation can be caused by compressors or flow instability. In 
particular we study the coupling between periodic vortex shedding and acoustic 
standing waves. To be able to predict for a given geometry the conditions at which 
resonant acoustic oscillations occur and to estimate the amplitude of such a resonance, 
knowledge is required on the quality factor of the resonator. This quality factor is 
determined by, amongst other things, the reflection coefficient of the acoustic waves at 
the end of the resonator, the damping of the acoustic waves by visco-thermal losses in 
the boundary layer and the interaction of acoustic waves with a turbulent mean flow. 
Typical for industrial conditions are low frequencies, low mean flow velocities and very 
high Reynolds numbers. 

In this paper an open pipe with various types of pipe terminations is studied. A plane 
acoustic pressure wave of complex-valued amplitude D+ and a reflected wave of 
complex-valued amplitude jj- are travelling inside the pipe in positive and negative 
directions respectively. The reflection coefficient R = $-/jj+ at an open pipe end is 
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easily obtained with a two-microphone method as described by Boden & Abom (1986) 
and Abom & Boden (1988). In the original method the wavenumbers of the plane 
acoustic waves are assumed to be known. These wavenumbers are calculated from the 
damping coefficient according to Kirchhoff (1868), see Davies (1988), Boden & Abom 
(1986), Abom & Boden (1988). A major advantage of the two-microphone method is 
that data can be obtained for very low Helmholtz numbers (Peters et al. 1992), at which 
the standing-wave method does not yield accurate results (Alfredson & Davies 1970). 
In order to increase the accuracy of the measurements, the two-microphone method is 
extended to a multi-microphone method with which the wavenumbers and the 
reflection properties can be measured simultaneously. In this way, the damping a, - of 
acoustic waves travelling in the pipe has also been determined. 

The parameters characterizing the problem are the Mach number M = Uo/co, the 
Helmholtz number ka = wa/c,, the mean flow Strouhal number Sr, = oa/U, which is 
equal to ka /M and the acoustic Strouhal number Sr,, = oa/zi,,. Here, a is the inner 
radius of the pipe, o the radian frequency of the acoustic waves inside the pipe, U, is 
the mean volume flow divided by the pipe cross-sectional area nu2 and c, is the speed 
of sound, while zi,, is the amplitude of the acoustic velocity at the open end of the pipe. 
Table 1 gives a summary of the main theoretical and experimental literature of the last 
few decades on the magnitude of the reflection coefficient IRI, the phase q5 of the 
reflection coefficient R, expressed as a so-called end correction 6 = (q5 - n)/(2w/c0) and 
the damping a*. Many theoretical results have been obtained for the reflection of 
acoustic waves at an open pipe end with sharp edges (e.g. Levine & Schwinger 1948), 
as well as for the influence of wall thickness (e.g. Ando 1969), mean flow (e.g. Munt 
1977, 1990; Cargill 1982a, b ;  Rienstra 1983; Howe 1979a) and vortex shedding (e.g. 
Disselhorst & van Wijngaarden 1980) on the reflection properties. However, no 
accurate experimental data are available for cases with both a low Mach number and 
a low Helmholtz number. In many cases experimental results are given in terms of 
transmission losses (e.g. Bechert 1980; Cummings & Eversman 1983). Typical scatter 
in reported data, as for example by Alfredson & Davies (1970), Abrishaman (1977), 
Ingard & Singhal (1975), Davies, Bento Coelho & Bhattacharya (1980), Boden & 
Abom (1986), and Abom & Boden (1988) of the reflection of plane acoustic waves at 
an open pipe end amounts to 3% in IR(, the magnitude of the pressure reflection 
coefficient R and 20% in the end correction 6. 

In the absence of a mean flow accurate predictions for the reflection coefficient and 
end correction at a sharp-edged pipe end are given by Levine & Schwinger (1948). For 
low Helmholtz numbers ka < 0.5, the work of Ando (1969) indicates that in a quiescent 
fluid there is no significant influence of the wall thickness at the pipe end on the 
magnitude of the reflection coefficient. However, Ando (1969) also predicted a 
significant increase of the end correction 6 with increasing wall thickness, S rising to the 
value of the end correction for a flanged pipe end given by Nomura, Yamamura & 
Inawashiro (1960). 

There is little information on the dependence of the reflection coefficient on the ratio 
zi,,/U, of the amplitude of the acoustic velocity zi,, at the pipe end and the mean flow 
velocity U, in presence of a mean flow nor on the ratio of the acoustical displacement 
and the pipe radius Sr,, = oa/zi,, in the absence of mean flow. Some experimental 
work on the nonlinear behaviour of pipe ends and diaphragms on the reflection 
characteristics at high acoustic amplitudes has been described in terms of quasi- 
stationary models by Ingard & Ising (1967), van Wijngaarden (1968), Bechert (1980), 
Cummings & Eversman (1983) and Cummings (1984). For a quiescent fluid, a 
prediction for the acoustic energy absorption by vortex shedding was calculated in the 
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limit Sr,, 9 1 by Disselhorst & van Wijngaarden (1980) using a two-dimensional 
description of the flow. 

In the presence of a mean flow, the reflection coefficient R and damping a are 
strongly influenced by the Mach number. The influence of the Mach number on the 
reflection properties was studied using a linear theory, including a Kutta condition at 
the pipe end, by Munt (1977, 1990). The theory of Munt (1977) and other theories, 
derived from this basic theory assume a uniform main flow (plug flow) and infinitely 
thin shear layers as boundaries for the jet. The shear-layer oscillations induced by the 
acoustic perturbations grow exponentially as they are convected away from the edges 
of the pipe end. Obviously after a few hydrodynamic wavelengths it is questionable 
whether linear theory is still applicable. Hence the validity of the theory is not obvious. 
Furthermore the theory should only be valid when the acoustic boundary layer is large 
compared to the main flow boundary layer at the pipe exit. The theory of Munt (1990) 
predicts that the reflection coefficient IRI can exceed unity within a critical range of the 
Helmholtz number. Cargill (1982a, b) and Rienstra (1983) analysed the problem for 
the case of low Strouhal number (Sr, = k a / M ) ,  and found a similar behaviour for the 
magnitude of the reflection coefficient when the Kutta condition was imposed at the 
edges of the pipe end, but a significantly different behaviour for the solution in which 
no Kutta condition was imposed. For the latter solution, the magnitude of the 
reflection coefficient in the low-Strouhal-number limit is equal to IRI = (1 - M ) / (  1 + M )  
which corresponds to the reflection of all of the acoustic energy at the pipe end. 
Rienstra (1983) was also able to predict a low-Strouhal-number limit for the end 
correction in the presence of a low-Mach-number mean flow. It is common practice 
(e.g. Davies 1988) to assume that for an unflanged pipe termination the presence of a 
mean flow has no effect on the ratio of the end correction 6 and the pipe radius 
a (6/a = 0.6133, see Levine & Schwinger 1948), i.e. for low Strouhal numbers it has the 
same value as for high Strouhal numbers. However, the low-Strouhal-number theory of 
Rienstra (1983) predicts the much lower value of Q/a = 0.2554. For the high-Strouhal- 
number limit, Rienstra (1983) and Howe (1979~) derived that the end correction 
indeed approaches the value (6/a = 0.6133) found in the absence of a mean flow 
component. For small but finite Mach numbers Howe (1979a) found a correction 
factor, which is a function of the Mach number, which has to be applied to this value 
of the end correction. In the intermediate region of Sr, = O(1) Cargill (1982b) states 
that there is no simple approximate analytical expression for Q/a. There are some 
indications of the non-uniform behaviour of 6/a  for low Mach numbers and low 
Helmholtz numbers. For example, the experimental data of Davies et al. (1980) 
indicate a decrease of the end correction Q as a result of the presence of a mean flow. 
However in the latter investigation the different cases of Sr, -+ 0 and Sr, -+ co are not 
distinguished. 

Powell (1951), Wilson et al. (1971) and Hirschberg et al. (1988) have shown that the 
presence of a horn at the end of the pipe may have a spectacular influence on the aero- 
acoustic behaviour of an open pipe termination. For a critical range of the Strouhal 
number the value of the energy reflection coefficient, defined as 

RE = IRI2 (1 - M 2 ) / (  1 + M ) 2 ,  

exceeds unity. We will present some additional data in particular on the behaviour of 
the end correction. 

In a quiescent fluid, a theoretical expression for the damping coefficient a is given by 
Kirchhoff (1868) for the case when the acoustic boundary layer is thin compared to the 
pipe radius. A general theory for low-frequency plane wave propagation in pipes can 
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be found in Tijdeman (1975). In the presence of a mean flow, the damping coefficient 
for the acoustic waves travelling in upstream direction is different from that for waves 
travelling in the downstream direction. This convective effect on the damping of acoustic 
waves has been studied by Ronneberger (1973, who proposes a quasi-laminar theory 
taking the turbulent mean flow profile into account, but neglecting the dissipation due 
to the interaction of the turbulent stresses and the acoustic field. An important 
parameter appears to be the ratio of the thickness Sac = (2v /o ) i  of the acoustic 
boundary layer and the thickness S, M lOv/(~,/p~)~ of the viscous sublayer of the 
turbulent mean flow boundary layer. Here, v is the kinematic viscosity, po is the density 
of the fluid and 7, is the mean wall shear stress. If the ratio is small, Sac 4 S,, the 
damping of acoustic waves is not influenced by the turbulent stresses, and a general 
agreement between the quasi-laminar theory of Ronneberger (1975) and the 
experimental data has been demonstrated by Ronneberger & Ahrens (1977). For very 
large values of the ratio S,,/S,, a quasi-stationary theory has been proposed by Ingard 
& Singhal (1974). A theory including the non-uniform turbulent eddy viscosity is 
proposed by Howe (1979b), and extended in a later paper by Howe (1984). Howe’s 
(1984) theory predicts the global features of the damping coefficient a+ satisfactorily. 
However, the difference between the experimental data obtained by Ronneberger & 
Ahrens (1977) and the results of the theory of Howe (1984) is still quite large, of the 
order of 20%. Furthermore the theory of Howe (1979b, 1984) is based on a two- 
dimensional flat-plate approximation and does not yield a finite quasi-stationary limit 
for the damping at low frequencies. Intuitively the ratio &,,/S, is expected to be crucial 
for the validity of the assumptions of plug flow and Kutta condition in the model of 
Munt (1977). These assumptions correspond to the limit 6,,/6, % 1. For this reason, 
reflection coefficient measurements have been carried out over a wide range of values, 

The purpose of the present investigation is to obtain accurate data for the reflection 
coefficient R and the damping a+ for low Helmholtz numbers ka, low Mach oumbers 
My and for a wide range of Stroihal numbers Sr, = ka/M and Sac. In this region of 
parameters, very few experimental data exist (see table 1) and furthermore this region 
is of special interest for practical applications. Differences between the various 
theoretical predictions for R and a+ are relatively small in this range of the parameters. 
Therefore a high accuracy of the experimental data is required to validate the 
predictions. 

In $2 the experimental set-up will be described as well as the extension of the two- 
microphone method to a multi-microphone method. The accuracy of the model is 
checked by comparison of experimental data, obtained in absence of a mean flow, with 
predictions. 

The damping of acoustic waves due to viscous and thermal forces, the influence of 
a non-zero mean flow and turbulence will be discussed in $3, where experimental data 
on the damping coefficient a are also presented. 

In $4 the acoustic properties of an open pipe end in the absence of mean flow is 
studied. The influence of the pipe end geometry on the reflection characteristics of a 
pipe end is determined and compared with theories found in the literature for both low- 
and high-amplitude acoustic fields. Finally the influence of a mean flow on the reflection 
properties of an open pipe end is discussed in $ 5 .  

0.2 < sa,/s, < 3. 
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FIGURE 1. Pipe end geometries used for the experiments (dimensions in mm): (a) sharp-edged pipe 
end; (b) thick-walled pipe end with wall thickness d of the order of do; (c)  thick-walled pipe end with 
wall thickness d much larger than do; (d)  circular horn with radius of curvature r = 4a. 

2. Set-up and experimental procedure 
2.1. Set-up 

The measurements have been carried out in a horizontal steel tube of 6 m length and 
inner radius a = 15.013 mm. The wall thickness of the tube is do.= 5.00 mm. The inner 
pipe wall has a surface roughness of less than 0.1 pm, which in all the applications 
considered here corresponds to an hydraulically smooth surface. A very thin coating 
of oil was present in order to avoid possible corrosion of the tube. The experimentally 
determined friction coefficient agreed within the accuracy of the volume flow 
measurement (0.5%) with the one that follows from Prandtl's law for the friction of 
a tube with hydraulically smooth walls (Schlichting 1968). 

The open pipe end is placed in the middle of a large room (20 x 16 x 9 m3), 0.66 m 
above a rigid floor. The nearest wall is at 6 m distance. The four different types of pipe 
end geometries studied in this paper are given in figure 1. The first, shown in figure 1 (a) 
and approximating the unflanged pipe termination with thin walls studied by Levine 
& Schwinger (1948), Munt (1977,1990) and others, has a sharp edge with a bevel angle 
of 20". The second type of geometry, given in figure 1 (b), is an unflanged pipe end with 
thick walls, with thickness d comparable with the thickness do of the pipe wall. Two 
values of the wall thickness d at the pipe end were chosen, with for ratios of inner to 
outer radius a/(a+d) = 0.85 and 0.70, each corresponding with geometries studied by 
Ando (1969). Experiments with pipe end wall thicknesses d larger than the pipe radius 
a, i.e. d/a = 4/3 and 20/3, i.e. with the type of pipe end geometry given in figure 1 (c), 
were carried out to obtain values for the end correction for conditions close to those 
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of a flanged pipe end. Finally a pipe end with a circular horn with radius of curvature 
r equal to 4a, shown in figure l ( d ) ,  was studied. This geometry is a reasonable 
approximation for the human lips when whistling. 

In the absence of a mean flow, the acoustic excitation is provided by a loudspeaker 
enclosed in a box with a hole of radius a at both sides of the box. One of the holes is 
placed at a distance 1 mm from the pipe entrance. By closing the remaining gap with 
flexible tape, the possible influence of acoustical streaming on the high-amplitude 
measurements was checked. No significant influence was observed. Mechanical contact 
between the pipe and the excitation is avoided by placing these elements on two 
independent frames. To avoid the transfer of mechanical vibrations from the 
loudspeaker to the pipe via the floor, the frame supporting the pipe is placed on six 
rubber strips. In order to obtain an optimal signal-to-noise ratio, the measurements 
were performed at frequencies corresponding to acoustic resonances of the 
pipe/excitation combination. Measurements of the reflection coefficient at a closed 
pipe have confirmed that there is no significant effect of pipe wall vibrations on the 
results of the measurements. 

In the presence of a mean flow, the acoustic pulsations are provided by a siren (see 
figure 2a) which is, in the frequency range considered (10 < f < 1000 Hz), a much more 
efficient sound source than the loudspeaker. A bypass allows a variation of the ratio 
of the amplitude of the acoustic velocity ti,, at the open pipe end and the mean flow 
velocity Uo in the range 0.01 < zi,,/Uo < 0.5. When the siren and the pipe are detached 
to allow the mean flow to escape through the gap between the two devices, the siren 
can be used to excite a pipe with a closed end. This allows the comparison of the 
reflection coefficient at a closed pipe end obtained by excitation with the loudspeaker 
with that obtained with the siren. High-amplitude acoustic fields could easily be 
obtained using the siren as a sound source, which however can induce significant 
temperature variations along the pipe. The present investigation is limited to low and 
intermediate values of the acoustic amplitude. When the siren was rigidly attached to 
the pipe, with an open side branch to deflect the mean flow, a small but significant 
deviation of the reflection coefficient of the closed pipe end was found (0.5 YO) for those 
frequencies, corresponding to the mechanical resonance frequencies of the set-up. With 
a gap of about 1 cm between the siren and the pipe end, the mechanical contact was 
avoided and the effect of the mechanical vibration on the reflection coefficient became 
negligible. Since the measurements for a closed pipe end are much more sensitive to 
small errors than measurements for an open pipe end, this implies that the siren does 
not induce significant vibrations in the pipe walls. However, in order to ensure that wall 
vibrations do not affect the data, the siren and the pipe were detached and the gap was 
closed with flexible plastic tape. 

The speed of sound co is calculated from the wall temperature measured at various 
positions in the pipe. The variation of the temperature along the tube is about 0.1 "C, 
which corresponds with the uncertainty in its measurement. Using a 0.2 mm 
thermocouple placed across the tube, it was verified that the stagnation temperature of 
the flow did not differ by more than 0.2"C from the wall temperature under the 
conditions considered ( M  < 0.1). The flow temperature T was calculated by assuming 
a recovery factor T = Tw(l -0.18M2) corresponding to a turbulent boundary layer at 
a plane surface according to Ronneberger (1975). The speed of sound was estimated 
by interpolation of the data found in Weast (1976). For measurements without a mean 
flow the speed of sound c, is corrected for the humidity of the air. For the experiments 
with mean flow the air is provided by a high-pressure supply (60 bar) and is dry 
(dewpoint -40 "C). 
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FIGURE 2. (a) Experimental set-up: (A) high-pressure supply, (B) valve, (C) flow meter (Instomet 
4-66), (D) reverberation chamber, (E) siren, (F) steel tube (inner radius a = 0.015 013 m), (G) pipe 
end geometry, (H) wall temperature measurement, (I) pressure transducers (type PCB 116 A), (J) 
charge amplifiers (type Kistler 5007), (K) data acquisition system (HP 3656 S). (b) Configuration of 
the pressure gauges in the pipe wall (dimensions in mm). 

The mean flow velocity U,, is calculated from the volume flow obtained with a 
calibrated turbine meter (type Instromet Q-66). The uncertainty in the measurement of 
U,, is about 0.5%. The measured U, is corrected for the difference in pressure and 
temperature between the pipe exit and the flow meter position. The calibration of the 
turbine meter was checked by a comparison of the measured mean velocity with the 
value obtained from the profile for a fully developed turbulent pipe flow where the 
centreline velocity was measured by a Prandtl tube. Also, a comparison with data 
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obtained with an orifice meter showed that the measured mean velocity is accurate to 
within 0.5 O h .  

The mean static pressure in the pipe was measured using a Wallace & Tiernan 
manometer with a measurement accuracy of 50 Pa. The atmospheric pressure was 
determined with a mercury manometer with an error of less than 100 Pa. The acoustic 
pressure in the pipe is measured by means of acceleration-compensated piezo-electrical 
gauges (type PCB 116 A). These gauges have a diameter of 10.3 mm. Because the 
diameter of the gauges is large compared to the pipe radius, the gauges cannot be 
mounted flush in the pipe wall. The installation of the gauges in the wall of the pipe 
is shown in figure 2(b). A channel (3.5 mm diameter and 1.5 mm long) connects the 
pipe with a cylindrical cavity (10.5 mm diameter and 0.5 mm deep) in front of the 
surface of the pressure gauge. Calibration of the installed gauge involving a reference 
pressure gauge mounted flush in a closed pipe end yields a correction on the gauge 
readings for the influence of the gauge installation units. 

The pipe consists of separate segments on which the individual pressure gauges are 
mounted. By interchanging these pipe segments, different positions of the microphones 
are obtained. As will be shown in the next section, the accuracy of the data depends 
on the relative position of the gauge with reference to the standing wave pattern in the 
pipe and hence on the frequency considered. As a rule of thumb, one of the gauges used 
for the determination of the reflection coefficient must be placed close to a pressure 
node. In the case of an open pipe end the first microphone is placed about three 
diameters from the pressure node at the pipe end. At this position a plane wave 
approximation yields an accurate description of the acoustical field. The proximity of 
this first microphone to the pressure node at the open pipe end implies that 
measurements will be accurate for a continuous range of frequencies. One of the 
microphones has to be positioned at a pressure node, which implies that when a closed 
pipe end is considered, or when data obtained at a location further down the pipe are 
considered (for example for the measurement of damping), full accuracy of the data is 
only achieved for discrete frequencies. 

The position xi ,  measured from the pipe end, of microphone i was determined with 
an accuracy of 0.1 mm. Measurements for a closed pipe end confirm that the acoustical 
position of the gauge corresponds with the geometrically determined position of the 
gauge. The signals from the microphones are amplified by means of charge amplifiers 
(Kistler type 5007, bandwidth 0.1 Hz < f <  22 kHz) and transferred for further 
analysis to an HP 35658 data acquisition system (dynamic range 80 dB, phase accuracy 
0.1", linearity 0.1 dB). Using FFT analysis (frequency discretization 0.004 Hz, using a 
Hanning window), the transfer functions Hij between microphones at positions xi and 
xj were obtained. Only data with a coherence equal to 1 within the accuracy of the 
measurement 

The reproducibility of the measurements appears to be determined by the 
analog/digital converter (1 3 bit). The accuracy of the measurements is mainly limited 
by the accuracy of the calibration of the pressure gauges. Because the measurement for 
the case of the closed pipe end is very sensitive to small errors in the calibration, these 
measurements were used to adjust the calibration obtained with the procedure 
described above. With this refinement the damping coefficient in a quiescent fluid 
obtained from the measurement data was used, which was close to the value predicted 
by Kirchhoff (1868). 

Because the measurements were carried out simultaneously reading up to six 
microphones, independent reflection coefficient data could be obtained. Data were 
checked for their sensitivity to systematic errors due to the uncertainties in the 

were used. Each measurement was repeated three times. 
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calibration. Suspect data, showing errors more than 0.5% as a result of the 
uncertainties in the calibration, were rejected. In general, data obtained with different 
microphone pairs agreed to within 0.1 %. Typical reproducibility of the data is of the 
order of 0.05 YO or better. The largest systematic errors observed are due to the room 
acoustics and will be discussed further. 

2.2. Mean f low conditions 
As the test section of the pipe was always placed more than 100 pipe diameters 
downstream of the siren, a fully developed turbulent mean flow was achieved in all 
experiments. The mean velocity profile close to the pipe end was measured by means 
of a constant-temperature hot wire of 5 pm diameter and 6 mm length. The average 
velocity U, inside the pipe was approximately 41 m/s, which is close to the maximum 
velocity used in all experiments. The measured velocity profiles in the shear layer of the 
free jet at a flanged pipe end are presented in figure 3. The momentum thickness of the 
shear layer increases linearly with the distance to the pipe end. For the steady flow in 
a pipe segment ended by a horn, the separation point depends strongly on the Reynolds 
number for the flow conditions considered. This effect is measured by means of a 
pressure recovery factor, defined by C, = Ap/:pp, U;, where Ap is the pressure 
difference between a point inside the pipe in front of the horn and a point in the far 
field outside. This pressure recovery factor is presented in figure 4 and can be related 
to an effective diameter Dj of the free jet, assuming a uniform free jet flow and using 
the Bernoulli equation, by C, = 1 - (2a/DJ4. The maximum pressure recovery factor 
is C, = 0.3, which is equivalent to a maximum increase of the jet width of about 10 %. 

2.3. Determination of reflection coeficient and damping 
Using the measured transfer functions Hj,  between the microphone at position x j  and 
the reference microphone at position xi, close to the open pipe end ( x  = 0), the 
reflection coefficient R of the open pipe end and the complex-valued wavenumbers k ,  
and k- of the acoustic waves travelling in positive and negative directions, can be 
determined. The underlying analysis is based on the assumption that the acoustic field 
can be described in terms of plane waves for which p(x, t )  = O(x)eiwt with 

3 (1) 

where p is the complex-valued amplitude of the acoustic pressure j j(x) and w is radian 
frequency. The imaginary parts of the wavenumbers Im(k+) - correspond to the 
negative of the damping coefficients 01, - of the waves, 

jj(.-) = jj, e-ik+x +@ - eik-x 

a+ = -Im(k+). (2) 
When the wavenumbers k ,  and the transfer function Hji  = $(xj)/fl(xi) are known, the 
complex-valued reflection coefficient R(x )  at position x, defined as 

where k ,  is assumed to be independent of the position x .  If the wavenumbers k ,  are 
known, the reflection coefficient can be determined by the two-microphone method 
described by Boden & Abom (1986). The reflection coefficient at the pipe end 
R(0) will be denoted R. If the wavenumbers k ,  - are unknown as well, a multi- 
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FIGURE 4. Pressure recovery factor for the steady flow in the horn shown in figure 1 (d).  

microphone method can be used. When four microphones are used, three independent 
pairs of microphones can be selected. From (4) a set of three nonlinear equations is 
obtained with R, k ,  and k- as complex-valued unknowns. When more than four 
microphones are used, a nonlinear regression procedure can be used to solve the 
resulting set of overdetermined nonlinear equations (e.g. Ronneberger & Ahrens 1977). 
The procedure used for the experiments presented in this paper is based on the 
concentration of microphones into two clusters. The first cluster of microphones is 
placed near the pipe end. The second cluster is placed at a distance from the open pipe 
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end which is much larger than the microphone spacing within a cluster. The first cluster 
is used to determine the reflection coefficient R(x,) at position xi of the microphone 
closest to the pipe end. The second cluster is used to calculate the reflection coefficient 
R(xi) at position xi of the microphone of the second cluster placed in a pressure node. 
(This last condition determines the values of frequencies at which the experiments are 
carried out.) Under these conditions R(xi) and R(x,) appear to be most insensitive to 
random errors, calibration errors and other systematic errors. It was found that the 
values of R(xi) and R(x,) calculated using (4) for both clusters is rather insensitive to 
the precise value of k ,  as long as the microphones in each cluster are placed within a 
quarter of the acoustic wavelength. When a theoretical value is used for k, ,  an accurate 
first approximation for R(x,) and R(xj)  can be obtained. From thesevalues of the 
reflection coefficient, an accurate first guess for the damping coefficient a, can be 
determined from the imaginary part of the individual complex values of kJ and k- 
obtained from 

where Axii = xi - x j  is the distance between the microphones at the position xi and xi.  
In principle, because there is a mean pressure gradient along the pipe, the Mach 
number M and wavenumbers k, depend on the position x .  Using the correction 
procedure by Ronneberger & Ahrens (1977) this effect was estimated, but it appeared 
to be negligible for our experimental conditions ( M  < 0.1). Therefore here it is assumed 
that M and k ,  are independent of position x .  The complex-valued average wavenumber 
k, = +(k-+k;) can be obtained by averaging k, and k- or directly from 

This procedure can either be repeated, using the new values of the wavenumbers k ,  to 
recalculate R(xJ and R(xj),  or one can use a general nonlinear solver procedure to 
determine R ,  k ,  and k- from the signals of two pairs of microphones (one pair in each 
cluster). It turned out that both procedures converged rapidly towards the same result. 
Typical accuracy in JRI using the two-microphone method with theoretical estimates 
for the wavenumbers k ,  is better than 0.2% for 0.1 < ka and 0.3 YO for 0.1 < ka < 0.3. 
The typical absolute accuracy in 6 is about 0.03a. For the multi-microphone method 
the accuracy could be increased to 0.1 % for IRI, and to f 0 . 0 2 ~  uncertainty for 6. The 
accuracy of the wavenumber k ,  is 2 YO for the imaginary part and 0.02 O h  for the real 
part. The reproducibility was found to better than 0.05 % for IRI and 0.5 % for 6 and 
Im (k?) .  This accuracy was confirmed by measurements without a mean flow, and will 
be described in the following sections. 

The energy reflection coefficient RE is defined as the ratio of the intensities of the 
reflected the incident acoustic energy at the pipe end. The energy reflection coefficient 
RE is related to the pressure reflection coefficient R by (Mechel 1965) 

RE = lR12(LY2 l + M  ’ 

where M = U,,/c, is the Mach number, averaged over the duct cross-section. 
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FIGURE 5. Influence of wall thickness on the reflection coefficient for an open pipe end without a mean 
flow at low acoustic amplitudes (Srac > 20) as a function of the Helmholtz number ku. Influence of 
room resonances is observed mainly for ka z 0.1. A two-microphone method, using an experi- 
mentally determined value of the damping ao, close to the value given by (1 1) is used. Microphone 
positions: x, = -86.8 mm, xE = -224.5 mm. x , Sharp edges, a/(a+d) = 1.00. Thick walls: 
A, a/(a + d )  = 0.85 ; 0, a/(a + d )  = 0.70. (a) Absolute value of the reflection coefficient IRI ; (b) end 
correction 6: -, Levine & Schwinger (1948) for a/(a+d) = 1.00 and Ando (1969) for 
a/(a+d) = 0.85. In (b):  ----, Ando, (1969) for u/(a+d) = 0.70; ............., Nomura et al. (1960) 
for a /@ + d )  = 0. 

2.4. Injuence of the acoustics of the room 
The influence of the rigid floor on the reflection coefficient of the open pipe end is taken 
into account by assuming a point source below the floor, at the mirror-imaged location 
of the pipe end, of strength equal to the acoustic volume flow at the pipe end. This 
image source represents the reflection of the acoustic field at the floor. Free field 
conditions are assumed above the floor, i.e. reflections at the ceiling and the side walls 
are not taken into account. As the nearest wall is at 6 m, direct reflections at this wall 
are negligible. The correction to the reflection coefficient and end correction due to the 
presence of the floor is in the low-frequency approximation given by (Disselhorst & van 
Wijngaarden 1980) 

lRfJ - (RI = -%sin (2kH), (9) 

U s,, - s = -cos (2kH) ,  8H 
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where H is the distance of the pipe to the floor and lRfJ and a,, are the reflection 
coefficient and end correction in the presence of the floor, respectively. JRI and 6 are 
the values for the latter two quantities for free field conditions. For low Helmholtz 
numbers, i.e. ka < 0.3, the correction in our experiments (with H = 660 mm and 
a = 15.013 mm) is less than 0.2% for an open pipe end. Nevertheless it has been 
applied to all data presented here. 

Figure 5 compares the reflection coefficient IRI and end correction 6 obtained with 
a two-microphone method, in the absence of a mean flow, with the theoretical results 
of Levine & Schwinger (1948) for an unflanged pipe end with thin walls, and the theory 
of Ando (1969) for pipes with finite wall thickness d. It is found that the data for IRI 
obtained from the present measurements agree within 0.5 % with the theoretical data, 
while the data for 6 obtained from the experiments agree within 5 %  with the 
theoretical data. The data presented in figure 5 are obtained for low values of the 
acoustic displacement compared to the pipe radius. This condition can be expressed in 
terms of an acoustic Strouhal number Sr,, = wa/Li,,. The data of figure 5 are obtained 
for conditions such that Sr,, > 20. For acoustic Strouhal numbers in this range there 
is no significant nonlinear behaviour to be expected. 

The main systematic difference between the reflection coefficient obtained from the 
measured and the theoretical data occurs around ka = 0.1. It is expected that this 
apparent systematic error of about 0.5 YO is due to the resonance of the large room in 
which the experiments have been carried out. 

3. Damping 
In 993.1-3.3, the existing theories and data on damping of plane waves in smooth 

pipes will be discussed. New data obtained with the multi-microphone method 
described in the previous section are presented in 53.4. 

3.1. Damping in the absence of mean flow 
Viscothermal damping of acoustic waves in a quiescent medium in pipes has been 
studied by Kirchoff (1868), Rayleigh (1896, pp. 319-326) and Tijdeman (1975). In the 
low-frequency approximation, for which ka < 1 and for high shear numbers 
Sh = a(w/v)i 3 1, where v is the kinematic viscosity of the medium, the wavenumber 
can be approximated by 

1-i 1 k = -  ( I+---- 2/2 sh (1 +S) -& (1 ++Y +)), 
CO 

where y and Pr are the ratio of the specific heats, also known as Poisson's ratio, and 
the Prandtl number, respectively. In the experiments described in this paper ka < 0.3 
while Sh > 20. For air Pr = 0.71 and y = 1.4. The density po of air was taken from 
Weast (1976). For the dynamic viscosity of air 7 = pv the data given by Touloukian, 
Saxena & Hestermans (1975) were used. As a result, the temperature dependence of the 
kinematic viscosity of dry air is given by v = A + B(T- Tef) ,  with T the absolute 
temperature of the air inside the pipe, A = 1.51 lop5 m2/s, B = 9.2 x m2/sK and 
Tef = 293.16 K. The first correction to w/co, which is inversely proportional to the 
shear number, corresponds to the solution given by Kirchhoff (1868), and it also 
changes the phase velocity of the acoustic plane waves. The second term, i.e. the ShT2 
term, is a correction of the damping obtained by Kirchhoff (1868) and was obtained 
by Ronneberger (1975) from the exact expression given in Tijdeman (1975). The result 
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for Sh > 20 is, to within 0.01 YO, in agreement with the low-frequency solution obtained 
by Tijdeman (1975). 

The damping in a quiescent fluid is given by the negative of the imaginary part of 
(11), i.e. 

Although the Sh-’ term in (12) is usually neglected in the literature (e.g. Davies 1988; 
Morse & Ingard 1968; Pierce 1989) in our experiments it can attain values of 2% of 
the first term. Hence this correction should be taken into account in view of the 
experimental accuracy (1 YO) which is to be achieved in the damping. 

The dissipation is dominated by the viscothermal losses at the walls. The 
viscothermal losses in the bulk of the flow are given by Pierce (1989) as 

where p B  is the bulk viscosity which is approximately 0.6,~. The contributions due to 
relaxation processes can be accounted for by an enhanced bulk viscosity (Pierce 1989, 
chap. lo), which for low frequencies dominates the other contributions given in (13). 
This contribution to the damping is two orders of magnitude smaller than the losses 
in the boundary layer and will be neglected. 

3.2. Convective efects 
The wavenumbers for up- and downstream propagating acoustic waves are influenced 
by the mean flow velocity U,, defined as the volume flux divided by the ripe cross- 
section. For a uniform mean flow, neglecting damping, it is found that 

where M = Uo/c,  is the Mach number of the mean flow. The effect of a non-uniform 
laminar mean velocity distribution on the damping coefficient was studied by 
Ronneberger (1975). By taking into account the turbulent mean velocity profile 
Ronneberger (1975) solved the linearized equations for mass, momentum and energy 
conservation for a pipe flow. In this quasi-laminar theory the acoustic effect of the 
turbulent mixing was neglected. When the acoustic boundary-layer thickness 
6,, = (2v/w)i is small compared to the viscous sublayer 6, x lOv/v* of a turbulent pipe 
flow (where v* = ( ~ , / p ~ ) *  is the friction velocity), the quasi-laminar theory is expected 
to describe the damping of the acoustic waves quite accurately. To a first-order 
approximation, the damping coefficient is independent of the mean flow velocity 
distribution, but dependent only on the mean flow Mach number according to 
(Ronneberger 1975) 

5= (L? “l/(l-M)’]+(y-l)/Pr~ 
a+ 1 - M  [l/(l +M)2]+(y- l)/Pri’ 

valid for the region where a,, -= 6,. Using a two-dimensional flow model, Howe (1984) 
found an alternative result which for a,, < 6, is given by 

19 F L M  256 
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FIGURE 6. Influence of Mach number of the damping coefficient in the upstream (a_) and downstream 
(a+) directions. A, f =  630 Hz; 0, f =  3350 Hz: data of Ronneberger & Ahrens (1977). (01, 
f =  135 Hz: data obtained with a multi-microphone method with microphones at positions 
x1 = -86.8 mm, x2 = -347.8 mm, x3 = -385.3 mm, x4 = -4550.3 mm, x, = 4601.2 mm, 
x6 = -5093.7 mm. Data corresponding to values for which S,,/S, > 1 are shown as solid symbols. 
Theory for S,,/S, < 1: -----, quasi-laminar theory, Ronneberger (1975), equation (15); ....... ...., 
Howe (1984), equation (16); and for S,,/S, 9 1 : -.-.- , Ingard & Singhal(1974), equation (18); -, 
Howe (1984), equation (19). 

Since the theory of Howe (1984) is a cruder approximation than the one used by 
Ronneberger (1975), we expect the result given by Ronneberger (1975) to be more 
accurate for a,, < 6,. In figure 6 the data of Ronneberger & Ahrens (1977) for the 
damping coefficients are given as a function of the Mach number. The data were 
obtained by varying the Mach number keeping the frequency constant (630 Hz (A) and 
3350 Hz (0)). For the region where 6,,/6, < 1 the data are given by open symbols, 
while data for 6,,/6, > 1 are given as solid symbols. Included in figure 6 are the two 
theoretical results given by (1 5 )  and (1 6). For S,,/S, < 1, the quasi-laminar theory of 
Ronneberger (1  975) describes the convective effects quite accurately. However, for the 
region where the turbulence affects the acoustic damping 6,,/6, 9 1 ,  a strong deviation 
from the theory of Ronneberger (1975) is observed. Note, that (15) is only a first 
approximation of the quasi-laminar theory of Ronneberger (1975). Comparison with 
the full quasi-laminar solution can be found in Ronneberger & Ahrens (1977). The 
effect of turbulence on the acoustic damping properties will be described in the next 
subsection. 

3.3 .  Injluence of turbulence 
In the presence of a turbulent mean flow, the damping of acoustic waves is influenced 
by the action of the turbulent stresses, if the acoustic boundary-layer thickness 6,, is 
larger than the laminar sublayer 6,. The effect of turbulence can be described to a first- 
order approximation by adding to the kinematic viscosity an eddy viscosity, which is 
non-uniform over the pipe cross-section. The eddy viscosity is small compared to the 
kinematic viscosity for distances from the wall ( y )  small compared to the thickness of 
the viscous sublayer 6,. For y > 6,, in the logarithmic region of the turbulent boundary 
layer, the eddy viscosity increases approximately linearly with the distance from the 
wall. Using van Driest's hypothesis (see Schlichting 1968) for the calculation of the 
eddy viscosity, Ronneberger & Ahrens (1977) derived a model for the damping of 
acoustic waves by a turbulent mean flow. From their experimental data three different 
regions could be distinguished in terms of the relative thickness of the acoustic 
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boundary layer. For low values of the ratio Sac/S,, the damping of acoustic waves is not 
influenced by the turbulent shear stress and is accurately described by the quasi- 
laminar theory of Ronneberger (1975) (figure 6). This finding fully agrees with the 
observation that the eddy viscosity is small in the viscous sublayer. For large values of 
S,,/S,, the damping was found to increase linearly with the acoustic boundary-layer 
thickness. In this case, the damping is mainly a result of the turbulent mixing in the 
bulk of the flow. For a value of the ratio S,,/6, of order one, at a critical Mach number 
a minimum in the damping was observed by Ronneberger & Ahrens (1977). This 
minimum is lower than the value predicted by the quasi-laminar theory. Hence 
Ronneberger & Ahrens (1977) conclude that the damping appears to be reduced by the 
presence of turbulence. They explain this to be a result of the destructive interference 
at the wall of the shear waves generated by the acoustic field with the shear waves 
reflected at the edge of the viscous sublayer by the strong variation of the eddy 
viscosity. For critical ratios of the acoustic boundary-layer thickness and the thickness 
of the laminar sublayer, this destructive interference is maximal which results in the 
observed minimum in the damping. 

Using the eddy viscosity model of van Driest (Schlichting 1968), Ronneberger & 
Ahrens (1977) could not predict the minimum in the damping. In their model the 
damping coefficient a, = limM+, a+ - was always larger than the damping in the absence 
of a turbulent mean flow. 

Using a model for the eddy viscosity in which the eddy viscosity depends linearly on 
the distance from the wall and in which the eddy viscosity is neglected within the 
viscous sublayer, Howe (1984) did predict a minimum of the damping coefficient a,. 
However, the minimum in a, does not appear at the correct value of S,,/S,, and the 
interference effect is severely underestimated. 

Even the simplified ‘rigid plate’ model, proposed by Ronneberger & Ahrens (1977), 
assuming an infinitely large eddy viscosity, which certainly overestimates the reflection 
of the shear wave at the edge of the viscous layer does not predict the correct S,,/S, at 
which the minimum in the damping occurs, nor the correct value of the minimum itself. 
Using the thickness of the laminar sublayer S, as a parameter to shift the position of 
the minimum to the observed value of S,, at minimum, the minimum in the damping 
is underestimated by a factor of two. 

Because the shear wave decays rapidly with the distance from the wall, a deep 
minimum suggests reflections from a distance ( y )  smaller than the value of 6, used in 
the existing theories. To obtain a destructive interference one should then have an 
additional phase shift during the reflection. This phase shift might be related to the 
‘memory’ of turbulence. Hence in spite of the fact that Ronneberger & Ahrens (1977) 
assume these memory effects to be negligible, a theory neglecting these effects does not 
explain the available experimental data. 

More recently Ronneberger (1991) estimated that the timescale involved in the 
memory effects of turbulence is of the order oft, = 10O~/v*~. This corresponds to the 
acoustic period if w+ = OV/V*~  = 2~/100. This appears to be a value of the same order 
of magnitude as the value of w+ at which the damping approaches a minimum 
(w+ z 0.01) in the experiments of Ronneberger & Ahrens (1977). 

If the rigid-plate model proposed by Ronneberger & Ahrens (1977) is extended, 
including a phase shift of wt, = l O O o +  of the reflection at the edge of the viscous 
sublayer ( y  = S,), the shear stress at the wall 7, is given by 

7 1 + exp [ - 2(1+ i) (q/cc) - 2OOi/Si:] 0- - 
~ S t o l c e s  1 - exp [ - 2( 1 + i) (8:/43] 

’ 

19-2 
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FIGURE 7. Influence of turbulence on the shear stress impedance, 2, = (1 + i) rO/rStokes. (a) Real part 
Re (Z,), (6) imaginary part Im (2,). x , Experimental data of Ronneberger & Ahrens (1977). ----, 
rigid-plate model (c = 15) (Ronneberger & Ahrens 1977); . . . . . . . . , rigid-plate model with memory 
effects (c = 12.5), equation (17); --, model (Howe 1984) (c = 7). 

where the superscript + denotes values non-dimensionalized with the kinematic 
viscosity v and the friction velocity v*, and 7StoSes = b(1 +i)/8iC] tiaceiot is the shear 
stress for a Stokes boundary layer in the absence of a mean flow. If the value of is 
adjusted to fit the low-frequency quasi-steady limit, a value 8: = 12.5 is obtained. In 
figure 7 the experimental data of Ronneberger & Ahrens (1 977) for the wall shear stress 
impedance 2, = (1 + i) 70/7Stokes in the presence of a turbulent mean flow is compared 
with the results of the rigid-plate model of Ronneberger & Ahrens (1977) with = 15, 
the theoretical result of Howe (1984) with 8: = 7, and the modified rigid-plate model 
with 8; = 12.5 in which a phase shift due to memory effects of turbulence is taken into 
account. Figure 7 clearly shows that the memory effects can be responsible for the 
differences between the results of existing theories and the experiments. The result 
given in (17), obtained by including the memory effect into the simple rigid-plate 
model, considerably increases the correlation between theory and the experiment. This 
is rather surprising, since the rigid-plate model is a very crude model of the interaction 
of the acoustic shear wave with the turbulent flow, away from the wall. The decrease 
of the wall shear stress observed by Ronneberger & Ahrens (1977) agrees with more 
recent data on the wall shear stress reported in Mankbadi & Liu (1992) and Louis & 
Isabey (1992), although the data presented there show a large scatter, in particular in 
the region where 8,,/S, > 1. 
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For high values of the ratio 6,,/6, the two-dimensional approximation of the 
boundary layer used by Howe (1979b, 1984) is no longer valid, because the acoustic 
boundary-layer thickness then becomes of the order of the radius of the pipe (Sh z 1). 
From the experimental data of Ronneberger & Ahrens (1977), a quasi-stationary 
behaviour is obtained for S,,/S, > 2. The two-dimensional theory of Howe (1984) does 
not have such a quasi-stationary limit for 6,,/6, -+ 00 in its present form. This is a severe 
drawback which calls for further theoretical study. 

Ingard & Singhal(l974) have derived a quasi-stationary theory for the damping in 
the region where 6,,/6, is large. In their theory, the damping coefficient is given by 

where ak is the damping in a quiescent fluid according to Kirchhoff (1868), and is given 
by the first term in (12). In (18) Re is the Reynolds number, based on the mean flow 
velocity and the pipe diameter, and + is the turbulent friction factor. For smooth pipes + can be obtained from the Prandtl or Blasius equations (see Schlichting 1968). For 
high Reynolds numbers, + depends only weakly on the Reynolds number. The 
expression given by Howe (1984), can be simplified for the limit of 6,,/6, + 1 to 

In figure 6 the convective effects in the region where 6,,/6, > 1 can be compared with 
the experimental data of Ronneberger & Ahrens (1977), for a frequency of 630 Hz. In 
this region the theory of Howe (1984) is found to give a more accurate prediction of 
the convective effects than the theory of Ingard & Singhal (1974). 

Ingard & Singhal(l974) obtained the frequency dependence of the damping a* by 
simply adding Kirchhoffs damping ak in the absence of flow to a+ given by (18). This 
is certainly a very crude approach which is not justified by existing experimental data. 

A quasi-stationary limit for the damping coefficient can also be obtained from the 
rigid-plate model proposed by Ronneberger & Ahrens (1977) which, using the two- 
dimensional theory of Howe (1984), results in 

When 6: = 12.5, the value of the damping is reasonably close to the result of Ingard 
& Singhal (1974), given by (18). However the theory of Ingard & Singhal (1974) 
neglects the influence of thermal convection and corresponds to an isothermal solution. 
The convective effects and the frequency dependence of (20) are in much better 
agreement with the experimental data. It should be noted however that at the moment 
there is no well-established theory describing the convective effects in the quasi- 
stationary limit. 

3.4. Experimental results 
Using the multi-microphone method the damping coefficient for plane waves travelling 
in a pipe in a quiescent fluid have been determined for a set-up consisting of a pipe with 
a closed end. The reflection coefficient of the closed pipe end is R(0) = 1, while a 
reflection coefficient R(x,) was obtained with two pairs of microphones 3.5 m from 
the closed end. From (7) the average wavenumber k,, and as a result the damping, 
could be determined accurately. The damping coefficient ti obtained for the acoustic 
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waves is presented in figure 8. The damping coefficient is normalized by the theoretical 
value for the damping a, in the absence of mean flow for high shear numbers (equation 
(12)). The data obtained with the different microphone pairs agree within the 
experimental accuracy ( f 2 %) of Z. Figure 8 shows that the damping is within the 
range of the required accuracy for the present measurements, i.e. the damping is about 
0.7 % larger than the value predicted by (12). This small systematic deviation can partly 
be explained by the viscosity in the bulk of the flow, mainly due to relaxation processes. 

For the measurements without mean flow, presented in $4, the data obtained with 
the two-microphone method were post-processed by using the experimentally 
determined value of the damping. 

The damping of acoustic waves in a turbulent mean flow was obtained in two ways : 
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ka = 0.0371; 0, ka = 0.0121. Variable Helmholtz number: ' x ,  M = 0.011, 0.042 and 0.107. 

at constant Helmholtz number by varying the Mach number, 0.01 < M < 0.1, and at 
constant Mach number by varying the Helmholtz number between 0.01 < ka < 0.06, 
which is the range where the microphone calibration is most accurate. In figure 9 the 
damping coefficients for waves travelling in the up- and downstream directions are 
shown as a function of the Mach number at constant frequency cf= 88 Hz). The 
damping is non-dimensionalized with the value in the absence of mean flow (equation 
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(12)). For high Mach numbers, a strong increase of damping is observed as the 
damping tends towards a quasi-stationary limit. The damping in the up- and 
downstream directions is different due to the presence of a mean flow. 

The average wavenumber k,  can be accurately obtained from the multi-microphone 
method according to (7), while the different values of the up- and downstream 
wavenumbers, obtained from (6), are more sensitive to calibration errors. Therefore 
average values, k,, are presented in figure 10 rather then data for k,, extrapolated to 
zero Mach number in the way proposed by Ronneberger & Ahrens (1977). For low 
Mach numbers M < 0.1, the difference between k,  and 1imM+, k ,  is of the order of M 2 .  

Figure 10 (a) presents the average damping coefficient ii = +(a- + a+), normalized by 
the value in the absence of a mean flow, ao, given in (12), as a function of gc. The 
experimental data are again obtained in two ways: at constant frequency by varying 
the Mach number, and at constant Mach number by varying the frequency. Within the 
experimental accuracy (2 YO in Im (k)) the different data sets collapse to a single curve. 
The data agree with the real part of the averaged wall impedance 

which is equal to a weighted sum of the shear stress impedance 2, and the impedance 
of the heat conduction wave 2,. In the region where 6,,/6, z 1 the damping decreases 
significantly to a value about 3 YO smaller than the damping for the case without mean 
flow. In the region just before that (6& E 7) the damping increases slightly (k4Y0) 
which is clearly seen in the enlargement in figure lO(a). Although the data of 
Ronneberger & Ahrens (1977) are obtained from an extrapolation of results obtained 
at finite Mach number to results for zero Mach number, the difference with the average 
damping is less than 2 % for M < 0.1. In the present investigation experimental data 
could be obtained for a value of 6iC twice the maximum value obtained by Ronneberger 
& Ahrens (1977). In this region a change in the quasi-stationary behaviour is found. 
A similar behaviour is also observed in figure lO(b), which shows the imaginary part 
of the averaged wall impedance 2. For 6ic < 25, this parameter decreases towards a 
value of 0.4, which was also obtained by Ronneberger & Ahrens (1977), but a small 
increase is found for ~3:~ > 25. 

The convective effect on the damping expressed in the form a_/&+ is given in figure 
6 for a constant frequency of 135 Hz. Indeed the present low-frequency data are in 
reasonable agreement with the earlier data at higher frequencies (630 and 3350 Hz) of 
Ronneberger & Ahrens (1977), and clearly exhibit the convective effect for the different 
regions where 6,,/6, + 1 and 6,,/6, 4 1. 

4. Open pipe end in a quiescent fluid 
4.1. Influence of pipe end geometry 

In this section the linear behaviour of an open pipe end in a quiescent fluid is 
considered. The linear behaviour is found for low amplitudes of the acoustic velocity 
field (ziac/cO 4 1 and Sr,, = wa/zi,, + 1). 

Analytical results are in general limited to either an unflanged thin-walled open pipe 
in free space, or a pipe with an infinitely large hard baffle (flanged pipe end). The theory 
further neglects the influence of viscosity, which corresponds to the limit of high shear 
numbers (Sh >> 1). 

Because our emphasis is on low Helmholtz numbers (ka 4 0.3), the acoustic field in 
the pipe can be described in terms of plane waves. Furthermore, in this limit the 
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reflection coefficient can be determined by assuming incompressible flow. At a distance 
rl from the pipe end for which r l /a  9 1 but kr, 4 1, the flow at r1 can be described by 
the incompressible flow generated by a point source. Matching the volume flow at the 
pipe exit with the volume flow at rl, and mathing the acoustical energy fluxes yields the 
absolute values of the reflection coefficient at the pipe end, namely 

IRI = 1-i(ka)2 (22) 

IRI = 1 (23) 
for ka < 0.2 for a flanged pipe end. The difference between these low-frequency 
approximations and the more accurate expressions derived by Levine & Schwinger 
(1948) for an unflanged thin-walled pipe end, by Ando (1969) for an unflanged thick- 
walled pipe end and by Nomura et al. (1960) for a flanged pipe end are of the order 
of the experimental accuracy (0.5 YO). In figure 5 the reflection coefficients determined 
from the present measurements are given for an unflanged pipe end with different 
values of the wall thickness (a/(a+d) = 0.70, 0.85 and l.OO), and compared with the 
exact theory of Levine & Schwinger (1948). It is indeed found from figure 5 (a), that in 
the low-frequency limit the shape of the pipe end does not influence the magnitude IRI 
of the reflection coefficient as suggested earlier by Bechert (1980). 

Figure 1 1  shows the reflection coefficient for a pipe terminated by a horn, with a 
radius of curvature equal to twice the pipe diameter (see figure Id). For this 
configuration also the theory for the unflanged pipe end appears to be valid for the 
magnitude of the reflection coefficient IRI, at least up to ka = 0.15 For higher 
frequencies, the radiation is considerably enhanced by the horn. At ka = 0.1 a small 
influence of room resonances is observed and agrees with the data for an unflanged 
pipe end in figure 5(u). 

In contrast to the reflection coefficient lRl, the end correction 6 strongly depends on 
the geometry of the pipe end. The end correction is a measure of the inertia of the 
acoustic flow around the pipe end. This effect is determined by the local flow within a 
region with lengthscale of the order of the pipe radius. Hence as far as IRI is concerned, 
an unflanged pipe with a thick wall will behave like any other unflanged pipe if the wall 
thickness is small compared to the wavelength of the acoustic field. The end correction 
S of an unflanged, thick-walled pipe is close to that of a flanged pipe end, if the wall 
thickness is larger than the pipe radius. Indeed, as predicted by Ando (1969) an increase 
of the end correction is observed from the value predicted by Levine & Schwinger 
(1948) for an unflanged thin-walled pipe end, i.e. 

for ka < 0.2 for an unflanged pipe end, and 

S/a = 0.6133-0.1168(ka)2 (24) 

S/a = 0.8217-0.367(k~)~ (25) 

for ka < 0.5 towards the end correction for a flanged pipe end predicted by Nomura 
et al. (1960) 

for ka < 0.5. Figure 5(b) shows the end correction determined from the present 
measurements for an unflanged pipe end with thin (a/(a+d) = 1.0) and thick walls 
(a/(a+d) = 0.70,0.85). For a pipe end with wall thickness a/(a+d) = 0.70, the 
influence of the wall thickness on the end correction observed in figure 5 (b) agrees with 
the theoretical data given by Ando (1969). The theoretical data given by Ando (1969) 
for a/(a + d) = 0.85 would imply a negligible influence of the wall thickness d on the 
end correction 6 for ka < 0.3. The experimental results however, show a significant 
increase of S for this value of the wall thickness. As the theoretical end correction of 
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FIGURE 1 1 .  (a) Pressure reflection coefficient IRI and (b) end correction 6 for a pipe terminated by a 
horn in the absence of a mean flow as a function of the Helmholtz number ka at low acoustic 
amplitude. 0, Data obtained with a two-microphone method with microphones at positions 
x1 = - 1 17.6 mm, x, = -255.3 mm using an experimentally determined value of a,. -, Theory for 
an unflanged pipe end by Levine & Schwinger (1948). 

Ando (1969) for a/(a+d) = 0.85 is substantially different from the experimentally 
determined values we think that this discrepancy is due to an error in the representation 
of the theoretical data, rather than a fundamental difference between the theory and 
experiment. 

The end correction data for a pipe terminated by a horn are presented in figure 11 (b).  
The end correction (defined relative to the end of the straight pipe and therefore 
much larger) shows a gradual increase ( f 13 %) with increasing Helmholtz number 
(0 < ka < 0.3). 

Using a one-dimensional approximation for the acoustic flow in the horn the end 
correction of the horn can be estimated to be &/a = 1.92, while a value close to 2.3 is 
found from the experiment. This indicates that the end correction of a horn is 
dominated by the inertia of the acoustic flow within the horn. 

4.2. Nonlinear losses 
The most significant nonlinear effect observed in the present experiments is the effect 
of the unsteady separation of the acoustic flow at the pipe end and the formation of 
vortices associated with the separation of the flow. This occurs when the amplitude of 
the acoustic displacement is large compared to the pipe radius, i.e. for conditions where 
the acoustic Strouhal number Srac = wa/ti,, is small. 
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This nonlinear behaviour of the acoustics of a pipe end causes a strong increase in 
the absorption of sound since part of the acoustic energy is transferred to the kinetic 
energy of vortices which is subsequently dissipated by friction. The nonlinearity was 
studied by Bechert (1980) and Cummings & Eversman (1983) for a pipe which ends 
into a nozzle, and by Ingard & king (1967) and Cummings (1984) for a flanged pipe 
exit with an orifice plate at the exit. For an unflanged pipe end, without mean flow, 
both with sharp and with rounded edges, the nonlinear behaviour was studied 
extensively by Disselhorst & van Wijngaarden (1980). For high acoustic Strouhal 
numbers, vortices shed at the pipe end remain in the vicinity of the edges where they 
have been generated. Under these conditions, the vorticity generation and convection 
process can be described qualitatively by a locally two-dimensional potential flow 
model, employing for example discrete point vortices as proposed by Disselhorst & van 
Wijngaarden (1980). Peters & Hirschberg (1993) have shown that similar results can be 
obtained using a model with a single point vortex in combination with a vortex 
segment attached to the edge. In contrast to Disselhorst & van Wijngaarden (1980), the 
single vortex model predicts an acoustic energy absorption which is a factor 2.5 lower 
than the value observed experimentally at a sharp-edged pipe end. Comparison of the 
two-dimensional flow model with flow visualization of a two-dimensional flow by 
Disselhorst & van Wijngaarden (1980) and with more detailed calculations based on 
a vortex blob method indicate that the flow model is fairly accurate. The discrepancy 
between the calculated and measured values of the absorption is suspected to be due 
to the translation of the two-dimensional results into a three-dimensional situation. 
The procedure proposed by Disselhorst & van Wijngaarden (1980) is based on a 
matching of the acoustic potential flow. This procedure neglects the contribution of the 
vortex filament curvature to the self-induced velocity in the three-dimensional case. In 
the case of a free vortex ring with a core radius corresponding to Sac, this would result 
into an underestimation of the vortex velocity by a factor 3. As the vortex ring velocity 
depends only weakly on the core radius, this effect is only weakly dependent on the 
frequency. 

For low Strouhal numbers, a quasi-steady theory like the one described by 
Disselhorst & van Wijngaarden (1980) can be used, in which jet flow is assumed during 
the part of the period of the acoustic field with a positive velocity, and during the 
remainder of the period the flow is characterized by the formation of a venacontracta 
with a turbulent recovery region. For the acoustic power absorbed by the vortex 
shedding non-dimensionaiized with &Sli:, xu2 and averaged over a period of the 
acoustic oscillation, it is found that 

for Sr,, 9 1, where a star denotes the non-dimensionalized quantity, and 

for Sr,, 4 1. The parameter cd is determined by the geometry of the pipe end and is 
equal to 2 for a thin-walled unflanged pipe end and equal to for a flanged pipe. 
Disselhorst & van Wijngaarden (1980) determined the parameter /3 by means of 
numerical simulation and found values between 0.6 and 1 .O, depending on the number 
of point vortices used to describe the vortex shedding process. Using a simpler flow 
model, but the same procedure to translate the two-dimensional results into the three- 
dimensional case, Peters & Hirschberg (1993) found a value of /3 = 0.2. The power loss 
due to vortex shedding and radiation of acoustic energy at the pipe end, averaged over 

P:, = 2c,/3x (27) 
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a period, can be determined experimentally from the reflection coefficient using the 
relation (see Cargill 1982a) 

for an open end in a quiescent fluid. The amplitude of the acoustic velocity fi,, at the 
open pipe end can be obtained from Ip+ - p J  = po co fi,,. For low Helmholtz numbers 
ka the theoretical reflection coefficient for a sharp-edged pipe end without vortex 
shedding is given by (22). The acoustic power loss by radiation is then given by 

FFad = ikaSr,,. 

For low Helmholtz numbers, the power loss by radiation is negligible compared to the 
nonlinear losses given by (26), as long as 

Sr,, 4 (ka)-i 

Employing (28), the total loss of acoustic energy was determined from the pressure 
reflection coefficient at the pipe exit and the amplitude of the pressure signal at a 
pressure transducer. For three frequencies (27, 54 and 84 Hz), the acoustic Strouhal 
number was varied by changing the amplitude of the acoustic velocity fiat. For these 
frequencies, the Helmholtz number is very small (ka = 0.0074, 0.0145 and 0.0230 
respectively), so that the condition for neglecting the radiation losses, given by (30), is 
certainly justified. Figure 12(a) compares the experimental data for the non- 
dimensionalized acoustic power loss by vortex shedding with the predictions of 
Disselhorst & van Wijngaarden (1980), given by (26) and (27). Also included in figure 
12(a) are data obtained by Disselhorst & van Wijngaarden (1980) from measurements 
of the quality factor of a resonating open pipe. Our measured data present an 
independent check for the theory. It is interesting to note that the high-amplitude data 
(Sr,, 4 1) agree better with the theory than the original data of Disselhorst & van 
Wijngaarden (1980). From figure 12(a) it is concluded that a quasi-stationary limit for 
the nonlinear power absorption is found which, for 1, is very close to the value 
from the theory proposed by Disselhorst & van Wijngaarden (1980). For lower 
acoustic amplitudes (Sr,, 4 1) the locally two-dimensional approximation of the 
vortex shedding proposed by Disselhorst & van Wijngaarden (1980) predicts the 
functional dependence on Sr,, of the acoustic power. A fair agreement is found for a 
value /3 = 0.5. Hence with p = 0.5, (26) can be used as a fit of the data for Sr,, 4 1. 

A change in the dependence on Sr,, of F;, is observed around Sr,, = 10. This is 
apparently related to the increasing asymmetry in the flow pattern during inflow and 
outflow of the acoustic field, observed by Disselhorst & van Wijngaarden (1980) in 
their flow visualization at Sr,, x 10. 

An advantage of the measurement of the reflection coefficient over the measurement 
of the quality factor of the resonating pipe used by Disselhorst & van Wijngaarden 
(1980) to determine the energy absorption by vortex shedding, is that with the present 
method the influence of the nonlinear behaviour on the end correction can also be 
determined. From the end correction data shown in figure 12(b), it is observed that 6/a 
varies only slightly with the acoustic Strouhal number. In the high-amplitude limit 
(Sr,, < l), a slight increase (5 %) is found relative to the linear behaviour, and a local 
increase of about 5 % is observed around Sr,, x 3. This rather small influence of flow 
separation on the end correction is quite surprising when compared to the spectacular 
effect of a mean flow on the end correction which will be discussed in the following 
section. 
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FIGURE 12. Acoustic amplitude dependence of (a) the non-dimensionalized acoustic power loss P* 
and (b) the end correction 6 in the absence of mean flow for an open pipe end with sharp edges or 
thick walls. The two-microphone method was used with microphones at positions x1 = -86.8 mm, 
x, = - 224.7 mm using an experimentally determined value of a,,. Sharp edges a/(a + d )  = 1 .OO: x , 
ka = 0.00742; A, ka = 0.0145; 0,  ka = 0.0230; 0, data of Disselhorst & van Wijngaarden (1980). 
Thick walls a/(a+d) = 0.70: 0, ka = 0.00742. Theory: (a) -, quasi-stationary theory for 
a/(a+d) = 1.00 (equation (27)); .. . . . . . . . . ... ., high-frequency limit for p = 0.5 (equation (24)); 
____ , quasi-stationary theory for a/(a+d)) = 0.70 (equation (27)). (b) -, end correction for 
a/(a+d) = 1.00 (Levine & Schwinger 1948); ----, end correction for a/(a+d) = 0.70 (Ando 1969). 
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The same experiments were also performed for a pipe end with thick walls, for which 
a/ (a+d)  = 0.70. The results are also presented in figure 12(b). Similarly to the 
behaviour of a sharp-edged pipe end, for a pipe end with thick walls a quasi-stationary 
limit of the acoustic power absorption is found, which agree with the predicted value 
given in (27) for a flanged pipe. However, a strong dip is observed in the acoustic power 
absorption at a value of the acoustic Strouhal number close to Sr,, = 5. For this 
Strouhal number, during one period of the acoustic field, the vortices shed at the sharp 
edge of the pipe end travel over a distance of the order of the wall thickness d. This 
effect is similar to the gain in acoustical energy for the case of a horn with a mean flow, 
which will be discussed in the next section. This effect can also be associated with the 
phenomenon of pipe tone and may play a significant role in the acoustical behaviour 
of tone holes in woodwinds like a clarinet for which at resonance Sr,, x 1. 

The end correction is found to agree with the theory of Ando (1969) for a thick- 
walled pipe exit for a/(a+ d )  = 0.70 and it shows only a slight influence of the acoustic 
amplitude for Sr,, < 1 and Sr,, x 3. 

5. Open pipe end with mean flow 
5.1. UnJEanged pipe termination 

A linear theory for the reflection of plane acoustic waves at a thin-walled, unflanged 
pipe end has been derived by Munt (1977). The results have been obtained in the form 
of integral equations which have been solved numerically by Munt (1990). In the 
presence of a uniform subsonic mean flow (plug flow) and for low acoustic amplitudes 
(&/ Uo -g 1) the linear theory predicts the pressure reflection coefficient at the pipe end 
as a function of the Helmholtz number ka and as a function of the mean flow Mach 
number M .  In the theory of Munt, a Kutta condition is assumed to apply at the edges 
of the pipe end, which implies a finite velocity and pressure at the edges. In that case, 
an acoustic disturbance of the jet corresponds to a transfer of acoustic energy into the 
kinetic energy of the vortical disturbances of the jet shear layers. It is found by Munt 
(1990) that the magnitude of the pressure reflection coefficient approaches a value of 
1.0 for all Mach numbers if the Helmholtz number approaches zero, i.e. 

lim 1RI = 1 for all M .  
lca-to 

The acoustic power loss P is, according to Cargill (1982a), given by 

which for the limit ka+O can be approximated as 

(33) 
ka+O Po co 

irrespective of the frequency. For M > 0, P is always positive. 
For intermediate Helmholtz numbers and for M > 0 the pressure reflection 

coefficient reaches a maximum value which lies above 1.0. Cargill (1982b) found that 
this maximum value appears at a Strouhal number of Sr, M n. The energy reflection 
coefficient RE as given by (8) remains less than 1.0 for all values of the Helmholtz 
number ka. 

For low Helmholtz numbers and low Mach numbers approximate but closed-form 
solutions of the theory of Munt (1990) have been derived by Cargill (1982a, b) and by 
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Rienstra (1983). Cargill (1982) and Rienstra (1983) both distinguish between the case 
where no Kutta condition is imposed and the case where a full Kutta condition is 
imposed at the sharp edge of the pipe exit, the latter corresponding to the case 
considered by Munt (1977, 1990). For the reflection coefficient, Cargill (1982b) found 
the following expressions for ka 4 1 : 

where g = (8, + ig,)/M, and gl, g, are functions of the Strouhal number Sro = ka /M 
defined in Cargill (1982b). The indices N K , K  denote the results for the cases without and 
with a Kutta condition imposed, respectively. The frequency dependence of the 
reflection coefficient corresponds to the low-frequency behaviour in the absence of 
mean flow given by (22). For 0 < M 4 1 the convective correction factor for IRI can be 
written as 

where the amplification factor dNK = 2 and d, = 2 - 2g,/(g; +gi)  which varies 
continuously between dK = 0 for Sro + 0 and dK = 0.90 for Sro + 00. It is found from 
(34) and (35) that 

IRI = (1 + M d )  (1 - ;(ka)'), (36) 

lim lRIK = 1, (37) 
ka+O 

l + M  lim lRINK = rM. 
ka+O 

The latter result for ]RINK agrees with the result for the flow through the pipe with zero 
net acoustic power, given by (32), because in the absence of a Kutta condition at the 
pipe edges no vortical disturbances are produced at the pipe end. 

For the Kutta/no Kutta condition cases Rienstra (1983) confirmed the above 
limiting behaviour of the reflection coefficient. In addition he obtained an expression 
for the end correction. Rienstra (1983) found also a non-uniform behaviour of the end 
correction for ka 4 1, M < 1.  For low frequencies ka, in the limit of vanishing mean 
flow M+ 0, with Sro = ka/M+ co, for the end correction the same limit value as found 
by Levine & Schwinger (1948) in the absence of mean flow, i.e. 

lim 6 / a  = 0.6133 
M-0,  S r p m  

(39) 

was obtained. For small but finite Mach number, and very low frequencies Rienstra 
(1983) found 

lim 6/a = 0.2554(1 - M 2 y .  (40) 
ka+O, Sr,+O 

Davies et al. (1980) report that the end correction does indeed depend strongly on 
the frequency. However, since the end correction is presented as a function of the 
Helmholtz number, rather than as a function of the Strouhal number, the differences in 
the end correction yield an apparent scatter of the obtained values. In addition, the 
limit of low Strouhal number is not reached because the data reported by Davies et al. 
(1980) and by Munt (1990) have been obtained for ka > 0.1 and M < 0.3. In the 
present experiments, our attention was focused on the range of the Helmholtz number 
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0 c ka c 0.06. By varying the Mach number in the range 0.01 < M < 0.2, the range of 
Strouhal numbers covered is 0.05 c Sr, c 6. Here we note that Rienstra (1983) did not 
expect that the low-Strouhal-number limit of the end correction could be obtained 
experimentally for any reasonable value of ku and M .  

Figure 13 presents the amplification factor d, appearing in the expression for the 
convective factor of the pressure reflection coefficient (equation (36)) and the end 
correction as a function of the Strouhal number for three different Mach numbers. The 
data obtained for these three Mach numbers collapse onto Cargill’s (1982b) and 
Rienstra’s (1983) predictions if a Kutta condition is assumed at the pipe edge. For the 
various Mach numbers the maximum value of the reflection coefficient is found to 
agree with the prediction by Cargill (1982 b), which is Sr, x n. Also the data for the end 
correction, presented in figure 13 (b) collapse onto a single curve when presented as a 
function of the Strouhal number. For high Strouhal number, a limiting value is found 
which is independent of the Mach number, while for low Strouhal number a limitinq 
value S/a = 0.19 is found. The latter value is close to the limit 0.2554(1 -M2)r  
predicted by Rienstra (1983). The Mach-number dependence predicted by Rienstra 
(1983), (40), could not be verified experimentally, as this Mach number dependence is, 
for M c 0.1, smaller than the scatter in the data (f0.02a in 8). For low Strouhal 
number, the difference between the predicted and the experimental value of the end 
correction might be due to the interaction between the unsteady and the stationary 
boundary layers as described by Howe (1979a). As noticed by Howe (1979a), the 
assumption of a uniform flow, made by Munt (1977, 1990), Cargill (1982b) and 
Rienstra (1983) is only valid if the thickness of the unsteady boundary layer (2v/o); is 
large compared to the characteristic length of the gradients in the shear layers of the 
jet leaving the pipe exit. In a turbulent pipe flow this characteristic lengthscale is the 
thickness of the laminar sublayer 8,. In our experiments 6,,/S, varied between 0.2 and 
3. In this range, for the damping of acoustic waves in a turbulent flow, a transition was 
observed from a weak coupling between the turbulent flow and the acoustic field 
towards a strong coupling. A breakdown of the validity of the plug-flow model of 
Munt (1977) could be expected for S,,/S, < 1. It is therefore surprising that the 
experimental data do not show any deviation from the theoretical results from Munt 
(1990) in this region. 

It is also surprising that even a low-Mach-number mean flow influences the end 
correction significantly (> 60 %), while nonlinearities, shown in figure 12(b), involving 
the formation of free jets, influence the end correction only slightly (c 10 %). 

5.2. Thick-walled pipe end and horn 
For the thick-walled pipe terminations, shown in figure l(c), the end correction is 
presented in figure 13(b). For a wall thickness of d/a = 4/3 the end corrections for a 
high Strouhal number equals the value of the end correction in the absence of flow. For 
low Strouhal numbers, S/u = 0.19 is found, which is equal to the value obtained at low 
Strouhal numbers for the end correction of an unflanged pipe termination. For a very 
thick-walled pipe end, with d/a = 20/3, it is shown in figure 13(b) that the end 
correction as a function of the Strouhal number has a similar appearance as for an 
unflanged pipe end with thinner walls. For low Strouhal numbers the end correction 
seems to be independent of the wall thickness of the pipe end. The value for high 
Strouhal numbers is generally found to agree with the end correction in the absence of 
flow. For an increasing thickness of the wall at the pipe end the end correction for a 
flanged pipe termination (equation (25)) given by Nomura et al. (1960) is obtained. 

The influence of the mean flow on the energy reflection coefficient RE of a pipe, 



Damping and reflection coeficients for an open pipe 

0.8 

529 

- (b) 

- 

1.0, 

- - -  
I 

t 

0.2 1 2 

1 .o 

a 

8 

" 
0.2 1 2 

sro 
FIGURE 13. Pressure reflection coefficient IRI = (1 + M d )  (1 -Hka)a) and end correction 6 for an open 
pipe end in the presence of a mean flow at low acoustic amplitudes. Two-microphone method with 
microphone positions x1 = -51.8 mm, x2 = - 189.5 mm, sharp edges: 0, M = 0.052, zi,,/U, = 0.1; 
+, M = 0.017, ii,,/U,, % 0.3. Multi-microphone method with microphone positions x1 = -86.9 mm, 
x2 = -239.3 mm, x, = -290.1 mm, x4 = -782.4 mm, x5 = - 1925.5 mm. Sharp edges: x , 
M = 0.002, ti,,/U, % 0.1. Thick walls: *, d/a = 413, M = 0.02, zi,/U, % 0.1; 0,  d/a = 2013, 
M = 0.01, a,,/U, z 0.1. (a) Amplification factor d as a function of Strouhal number (Sr,  = ka/M): 
-.-.-.- , dK, (SS,, = 2) (Cargill 19823). (3) End correction &/a as a function of Strouhal number 
(Sr, = ka /M) .  Unflanged pipe end: ----, Levine & Schwinger (1948) ( M  = 0), and Howe (1979a) 
for Sr, -t GO ; -, Rienstra (1983) for Sr, -t 0. Flanged pipe end: . . . . . . . . . . . , Nomura et al. (1960) 
(M = 0). 
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FIGURE 14. (a) Energy reflection coefficient RE and (b)  end correction 6 for a horn as a function of 
the Strouhal number Sr, = ku/M. The multi-microphone method was used with microphones at 
positions x1 = -91.8 mm, x2 = -577.8 mm, x3 = -628.8 mm, x4 = -4769.3 111111, 
x5=-4964.3mm, x6=-6066.8mm. +, M=0.107, Cac/UoxO.l; 0, M=0.042,  z'iac/Uo~O.l; 
x , M = 0.011, CJU, x 0.1. 

terminated by a horn with radius of curvature equal to r = 4a is shown in figure 14(a) 
for the mean flow Mach numbers M = 0.01 1, 0.042 and 0.107. From the comparison 
with the pressure reflection coefficient obtained in the absence of the mean flow 
presented in figure 11, it is observed that the reflection coefficient is dramatically 
influenced by the mean flow. The most striking effect is that, for a limited range of 
Strouhal numbers around Sr, x na/r, the energy reflection coefficient RE exceeds a 
value of 1.0. This indicates that the horn is a source of sound. For a horn such a 
behaviour has been reported earlier by Powell (1951) from analysing the radiated field 
and by Hirschberg et al. (1988) for different geometries of the horn using a two- 
microphone method. This feature has been studied by Wilson et al. (1971) in 
connection with human whistling. For the closely related Whistler nozzle configuration 
a similar behaviour was found by Hirschberg et al. (1988), who explained the sound 
production in terms of vortex sound. Like in the 'Whistler nozzle' studied by 
Selerowicz, Szumowski & Meier (1991) and Hirschberg et al. (1988), the horn presents 
significant acoustical energy production when the travel time of vortices across the 
horn matches a number of acoustic oscillation periods. The acoustical energy 
production at Sr, x na/r corresponds to the first hydrodynamic mode. A second, less 
pronounced, maximum at Sro x 27ca/r corresponds to the second hydrodynamic 
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mode. This behaviour is a further indication of a strong coupling (Kutta condition) 
between the acoustic field and the vortical field at the separation point, this in spite of 
the rather smooth curvature of the wall. 

The influence of the mean flow on the end correction is presented in figure 14(b). The 
end correction is measured with the end of the pipe of radius a as reference (x = 0). The 
end correction is dramatically influenced by the mean flow, in a similar manner as 
found for the unflanged pipe end presented in figure 13 (b). Similarly to the case of the 
unflanged pipe the value for high Strouhal numbers corresponds to the data obtained 
at low amplitudes in the absence of a mean flow (figure 11 b). For low values of Sr, a 
strong influence of the Mach number on 6 is observed. The end correction decreases 
from the value in the absence of mean flow and for low Helmholtz numbers, &/a = 2.3, 
towards a negative value. This strange behaviour of the end correction cannot be 
explained intuitively and calls for further theoretical analysis. It is also interesting to 
note that a horn has a more strongly pronounced nonlinear behaviour than an 
unflanged pipe for zi,,/U, M 0.5 (Peters et al. 1992). 

6. Conclusions 
A multi-microphone measurement technique is described that is used to obtain 

accurate values of the reflection coefficient IRI (0.1 YO), end correction 6 ( f 0.02~) and 
the damping coefficient a+ (2 'YO) of plane acoustic waves in an open pipe termination 
for ka < 0.3 and M < 0.2. 

The influence of the room resonances on the measured reflection coefficient (RI is less 
than 0.2% for ka < 0.1 and less than 0.5% for 0.1 < ka < 0.3. In the absence of a 
mean flow and for low amplitudes of the acoustic field, the present experimental data 
for IRI, 6 and a, determined for a closed pipe end and an open sharp-edged pipe end 
agree with the values provided by the theories proposed by Levine & Schwinger (1948) 
for (R] and 6, and of the damping a,, obtained from the solution proposed by Tijdeman 
(1975). Our data on the influence of the wall thickness on IRI and 6 agree with the 
predictions derived by Ando (1969). For low frequencies ka < 1 the influence of the 
wall thickness on the reflection coefficient IRI is found to be negligible. This is in 
agreement with the conclusion of Bechert (1980), that for low frequencies the exact 
shape of the pipe exit should not influence IRI. However, the end correction &is strongly 
influenced by the wall thickness. 

For high amplitudes of the acoustic field the influence of vortex shedding predicted 
earlier by Disselhorst & van Wijngaarden (1980) is confirmed. For low Strouhal 
numbers Sr,,, based on the amplitude of the acoustic velocity, a quasi-stationary 
limiting value for the absorbed acoustic power is obtained. For high Strouhal numbers, 
a locally two-dimensional model of the vortex shedding at the pipe end is used to 
predict the variation with the Strouhal number of the acoustic power absorption. 
Application of a two-dimensional model for the vortex shedding process at a circular 
pipe, as proposed by Disselhorst & van Wijngaarden (1980), yields a prediction of the 
power absorption which is a factor 2.5 lower than the measurements. This difference 
might be due to a fundamental problem with the translation from a two-dimensional 
flow theory to a three-dimensional case. For the high-amplitude behaviour of a pipe 
end with thick walls an indication was found that for certain values of the Strouhal 
number Sr,, based on the acoustic velocity and the wall thickness the vortices shed at 
the pipe end can also transform part of their kinetic energy back into acoustic energy. 
This behaviour is expected to be signficant in tone holes of reed woodwinds for which 
at resonance Sr,, = O( 1). 
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For an unflanged pipe end we were able to determine the influence of the mean flow 
on the behaviour of a sharp-edged pipe termination in a low-amplitude acoustic field. 
For M < 1 and ka 6 1 the values predicted by Munt (1990) and Cargill (1982a, b) for 
the reflection coefficient and the value predicted by Howe (1979a) and Rienstra (1983) 
for the end correction agree with the values found in the present experiments. For the 
reflection coefficient, our data confirm the theory of Munt (1990) and Cargill (1982) 
and therefore indirectly that the Kutta condition has to be imposed at the pipe end. It 
is surprising that the plug-flow model of Munt (1977) applies so well to a fully 
developed turbulent mean flow even for values of 6,,/6, as low as 0.2. It is shown that 
the end correction depends mainly on the Strouhal number Sr, based on the mean flow 
velocity, and that for low Strouhal number the end correction tends to the value of 
&/a = 0.19, which is close to the value of &/a = 0.2554 predicted by Rienstra (1983). 
For high Strouhal numbers Sr, the end correction agrees with the theoretical value of 
&/a = 0.6133 as predicted by Howe (1979a) and Levine & Schwinger (1948). The value 
of 6/a = 0.19 found for low Strouhal numbers was also obtained for thick-walled pipe 
ends with d /a  = 4/3 and 20/3. A negative value of the end correction was obtained for 
a pipe terminated by a horn. For all the pipe end geometries studied, the value of the 
end correction at high Strouhal numbers agreed with the value obtained without a 
mean flow. On the addition of a mean velocity field, the aero-acoustic behaviour of a 
horn is considerably influenced in the region where Sr, x na/r. In a critical range of 
Sr, near this value, the energy reflection coefficient RE is larger than unity. 

The influence of the mean flow on the damping coefficient was found to be accurately 
described by the quasi-laminar theory of Ronneberger (1975) in the region where the 
ratio 6,,/6, < 1, and by the theory of Howe (1984) in the region where S,,/S, > 1. The 
influence of turbulence on the wall shear stress impedance could qualitatively be 
described by the rigid-plate model, proposed by Ronneberger & Ahrens (1977), 
modified for inclusion of a memory of the turbulence. 

The multi-microphone method is found to be a very useful tool to obtain accurate 
quantitative data on the effect of vortex shedding on the aeroacoustic behaviour of a 
pipe termination. Further the influence of imposed unsteadiness on turbulent shear 
stress can be obtained more accurately using the multi-microphone method than using 
alternative methods. 

This work is part of the Ph.D. thesis by the first author, which is supervised by 
Professors G. Vossers and H. W. M. Hoeijmakers and has been supported financially 
by the Netherlands Foundation for Fundamental Research on Matter (FOM project 
ETN 77.1403) and the N.V. Nederlandse Gasunie. The authors would like also to 
thank E. Voorthuizen for his permanent support, Dr S. W. Rienstra, Dr J. Kergomard 
and Dr J. C .  Bruggeman for their encouraging comments and Dr D. Ronneberger for 
some very useful reports. A number of students have contributed to the experimental 
and theoretical work, and the authors would like to express their thanks to J. A. v.d. 
Konijnenberg, F. J. J. Huijsmans, G. J. P. ter Horst, P. C. Kriesels, J. Brouwers, R. W. 
de Leeuw and S. S. op de Beek. 

REFERENCES 
ABOM, M. & BODEN, H. 1988 Error analysis of two microphone measurements in ducts with flow. 

ABRISHAMAN, M. 1977 Effect of flow on the acoustic impedance of a duct exit. Noise and Fluid 
J .  Acoust. Soc. Am. 83, 2429-2438. 

Engineering, Proc. Winter Annual Meeting AMSE, Atlanta, Georgia, pp. 171-1 77. 



Damping and reflection coejicients for an open pipe 533 
ALFREDSON, R. J. & DAVIES, P. 0. A. L. 1970 The radiation of sound from an engine exhaust. 

J. Sound Vib. 13, 389-408. 
ANDO, Y .  1969 On the sound radiation from semi-infinite circular pipe of certain wall thickness. 

Acustica 22, 219-225. 
BECHERT, D. W .  1980 Sound absorption caused by vorticity shedding, demonstrated with a jet flow. 

J. Sound Vib. 70, 389405. 
BODEN, H. & ABOM, M. 1986 Influence of errors on the two-microphone method for measuring 

acoustic properties in ducts. J. Acoust. SOC. Am. 79, 541-549. 
CARGILL, A. M. 1982a Low-frequency sound radiation and generation due to the interaction of 

unsteady flow with a jet pipe. J.  Fluid Mech. 121, 59-105. 
CARGILL, A. M. 1982b Low frequency acoustic radiation from a jet pipe - a second order theory. 

J.  Sound Vib. 83, 339-354. 
CUMMINGS, A. 1984 Acoustic nonlinearities and power losses at orifices. AZAA J.  22, 786792. 
CWINGS, A. & EVERSMAN, W. 1983 High amplitude acoustic transmission through duct 

DAVIES, P. 0. A. L. 1987 Plane wave reflection at flow intakes. J. Sound Vib. 115, 56&564. 
DAVIES, P. 0. A. L. 1988 Practical flow duct acoustics. J .  Sound Vib. 124, 91-115. 
DAVIES, P. 0. A. L., BENTO COELHO, J. L. & BHATTACHARYA, M. 1980 Reflection coefficients for an 

unflanged pipe with flow. J.  Sound Vib. 72, 543-546. 
DISSELHORST, J .  H. M. & WIJNGAARDEN, L. VAN 1980 Flow in the exit of open pipes during acoustic 

resonance. J. Fluid Mech. 99, 293-319. 
HIRSCHBERG, A,, BRUGGEMAN, J. C., WIJNANDS, A. P. J. & MORGENSTERN, M. 1988 The whistler 

nozzle and horn as aero-acoustic sound sources in pipe systems. Proc. Inst. Acoust. 10,701-708. 
HOW, M. S. 1979a Attenuation o f  sound in a low Mach number nozzle flow. J. Fluid Mech. 91, 

HOW, M. S .  19796 The interaction of sound with low Mach number wall turbulence, with 

HOW, M. S.  1984 On the absorption of sound by turbulence and other hydrodynamic flows. IMA 

INGARD, U. & ISING, H. 1967 Acoustic nonlinearity of an orifice. J. Acoust. SOC. Am. 42, 6 1 7 .  
INGARD, U. & SINGHAL, V .  K. 1974 Sound attenuation in turbulent pipe flow. J. Acoust. SOC. Am. 

INGARD, U .  & SINGHAL, V .  K. 1975 Effect of mean flow on the acoustic resonance of an open-ended 
duct. J. Acoust. SOC. Am. 58, 788-793. 

KIRCHHOFF, G. 1868 Uber den Einfluss der Warmteleitung in einem Gase auf die Schallbewegung. 
Pogg. Ann. 134 (6), 177-193. 

LEVINE, H. & SCHWINGER, J. 1948 On the radiation of sound from an unflanged circular pipe. Phys. 
Rev. 73, 383-406. 

LOUIS, B. & ISABEY, D. 1992 Interaction of oscillatory and constant turbulent flows in airway-like 
tubes during impedance measurement. J .  Appl. Phys. (submitted). 

MANKBADI, R. R. & LIU, J. T. C. 1992 Near-wall response in turbulent shear flows subjected to 
imposed unsteadiness. J. Fluid Mech. 238, 55-71. 

MECHEL, F.,  SCHILZ, W. & DIETZ, J. 1965 Akustische Impedanz einder luftdurchstromten offnung. 
Acustica 15, 199-206. 

MORSE, P. M. & INGARD, K. U. 1968 Theoretical Acoustics. McGraw-Hill. 
MUNT, R. M. 1977 The interaction of sound with a subsonic jet issuing from a semi-infinite 

MUNT, R. M. 1990 Acoustic transmission properties of a jet pipe with subsonic jet flow: I, the cold 

NOMURA, Y., YAMAMURA, I. & INAWASHIRO, S.  1960 On the acoustic radiation from a flanged 

PETERS, M. C. A. M. & HIRSCHBERG, A. 1993 Acoustically induced periodic vortex shedding at 

PETERS, M. C. A. M., HLRSCHBERG, A., KONIJNENBERG, J. A., HUIJSMANS, F. J. J., LEEUW, R. W. DE, 

terminations: theory. J. Sound Vib. 91, 503-518. 

209-229. 

application to sound propagation in turbulent pipe flow. J. Fluid Mech. 94, 729-744. 

J. Appl. Maths 32, 187-209. 

55, 535-538. 

cylindrical pipe. J. Fluid Mech. 83, 609-640. 

jet reflection coefficient. J. Sound Vib. 142, 413436. 

circular pipe. J. Phys. SOC. Japan 15, 51&517. 

sharp edged open channel ends: simple vortex models. J. Sound Vib. 161, 281-299. 



534 M. C. A .  M .  Peters, A .  Hirschberg, A .  J .  Reijnen and A .  P .  J .  Wijnands 

BEEK, S. S. OP DE & WIJNANDS, A. P. J. 1992 Experimental study of the aeroacoustic behaviour 
of an open pipe termination at low Mach numbers and low Helmholtz numbers. AZAA Paper 
90-02-055, Presented at 14th Aeroacoustics Conf. Aachen, Vol. 2, pp. 350-355. 

PIERCE, A. D. 1989 Acoustics, an Introduction to its Physical Principles and Applications. McGraw- 
Hill. 

POWELL, A. 1951 A Schlieren study of small scale air jets and some noise measurements in two-inch 
diameter air jets. ARC 14726 FM 1694. 

RAYLEIGH, LORD 1896 The Theory of Sound, vol. 11, 2nd edn. Macmillan. 319-326. 
RENSTRA, S. W. 1983 A small Strouhal number analysis for acoustic wave-jet flow-pipe interaction. 

J .  Sound Vib. 86, 539-556. 
RONNEBERGER, D. 1975 Genaue Messung der Schalldampfung und der Phasengeschwindigkeit in 

durchstromten Rohren im Hinblick auf die Weckselwirkung zwischen Schall und Turbulenz. 
Habilitationsschrift Mathematische-Naturwissenschaftliche Fakultat der Universitat Gottingen. 

RONNEBERGER, D. 1991 Response of wall turbulence to imposed unsteadiness. Euromech Colloq. 
272, Aussois, France. 

RONNEBERGER, D. & AHRENS, C. 1977 Wall shear stress caused by small amplitude perturbations of 
turbulent boundary-layer flow : an experimental investigation. J.  Fluid Mech. 83, 433464. 

SCHLICHTING, H. 1968 Boundary Layer Theory. McGraw-Hill. 
SELEROWICZ, W. C., SZUMOWSKI, A. P. & MEIER, G. E. A. 1991 Self-excited compressible flow in a 

pipe-collar nozzle. J.  Fluid Mech. 228, 465-485. 
TIJDEMAN, H. 1975 On the propagation of sound in cylindrical tubes. J.  Sound Vib. 39, 1-33; also 

NLR Rep. MP 74004 U. 
TOULOUKIAN, Y. S., SAXENA, S. C. & HESTERMANS, P. 1975 Thermophysical Properties of Matter. 
WEAST, R. C. 1976 Handbook of Chemistry and Physics, 57th edn. CRC Press. 
WUNGAARDEN, L. VAN 1968 On the oscillations near and at resonance in open pipes. J .  Engng Maths 

WILSON, J. A., BEAVERS, G. S., DE COSTER, M. A., HOLGER, D. K. & REGENFUSS, M. D. 1971 
Experiments on the fluid mechanics of whistling. J.  Acoust. SOC. Am. 50, 366372. 

11, 225-240. 




